regular algebra - определение. Что такое regular algebra
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое regular algebra - определение

Regular algebra

Kleene algebra         
In mathematics, a Kleene algebra ( ; named after Stephen Cole Kleene) is an idempotent (and thus partially ordered) semiring endowed with a closure operator. It generalizes the operations known from regular expressions.
Regular element of a Lie algebra         
ELEMENT OF A LIE ALGEBRA, WHOSE CENTRALIZER HAS DIMENSION AS SMALL AS POSSIBLE
Regular element of a Lie group; Regular element (Lie theory); Rank of a Lie algebra
In mathematics, a regular element of a Lie algebra or Lie group is an element whose centralizer has dimension as small as possible.
Clerics regular         
A CATHOLIC PRIEST, DEACON OR BISHOP WHO IS A MEMBER OF A RELIGIOUS INSTITUTE
Clerk regular; Clerk Regular; Regular Clerk; Regular Clerks; Clerks regular; Regular clerics; Clerks Regular; Clerics Regular; Clerics regular
Clerics regular are clerics (mostly priests) who are members of a religious order under a rule of life (regular). Clerics regular differ from canons regular in that they devote themselves more to pastoral care, in place of an obligation to the praying of the Liturgy of the Hours in common, and have fewer observances in their rule of life.

Википедия

Kleene algebra

In mathematics, a Kleene algebra ( KLAY-nee; named after Stephen Cole Kleene) is an idempotent (and thus partially ordered) semiring endowed with a closure operator. It generalizes the operations known from regular expressions.